Math 245B Lecture 24 Notes

Daniel Raban

March 11, 2019

1 Distributions, Weak L^p , Strong Type, and Weak Type

1.1 Distributions

Last time, we introduced the notion of a distribution function $\lambda_f(\alpha) = \mu(\{|f| > \alpha\})$.

Definition 1.1. Let $f \ge 0$ and $\mu(X) < \infty$. Then the **distribution** of f is the measure $\nu(E) = \mu(\{x \in X : f(x) \in E\}).$

Observe that

$$\nu(a, b) = \mu(\{a < f \le b\}) = \lambda_f(a) - \lambda_f(b) = [-\lambda_f(b)] - [-\lambda_f(a)].$$

So λ_f determines the measure ν and basically contains all the information about how much measure the range of f has in given sets.

Proposition 1.1 (Chebyshev's inequality). Let $0 , and let <math>f \in L^p$. Then $\lambda_f(\alpha) \leq \|f\|_p^p / \alpha^p$.

Remark 1.1. When p = 1, this is called Markov's inequality.¹

Proof. $\lambda_f(\alpha) = \mu(\{f > \alpha\}) =: \mu(E_\alpha)$. By definition, $\mathbb{1}_{E_\alpha} \alpha^p \leq |f|^p$. Then

$$\mu(E_{\alpha}) = \alpha^p \int \mathbb{1}_{E_{\alpha}} d\mu \le \int |f|^p d\mu.$$

1.2 Weak L^p

Definition 1.2. If $f: X \to \mathbb{C}$, the "weak L^p norm of f is

$$[f]_p = (\sup_{\alpha>0} \alpha^p \lambda_f(\alpha))^{1/p}$$

 $^{^1\}mathrm{Markov}$ was Chebyshev's advisor. Chebyshev is responsible for noticing that the inequality holds in general.

Remark 1.2. This is generally not actually a norm; the triangle inequality fails. Chebyshev's inequality says that

$$[f]_p \le \|f\|_p.$$

Definition 1.3. The weak L^p space is

$$\operatorname{wk} L^p(\mu) = \{ f : X \to \mathbb{C} \mid [f]_p < \infty \} / \sim,$$

under the equivalence relation of μ -a.e. equality.

By Chebyshev's inequality, wk $L^p \supseteq L^p$.

Example 1.1. Let *m* be Lebesgue measure on $(0, \infty)$. Consider $f(x) = x^{-1/p}$. Then $f \notin L^p(m)$. But

$$[f_p] = \sup_{\alpha} m(\{f > \alpha\}) = \sup_{\alpha} \alpha^p = \sup_{\alpha} m([0, 1/\alpha^p))\alpha^p = 1$$

Proposition 1.2. Let $0 , and let <math>f : X \to \mathbb{C}$. Then

$$||f||_p^p = \int |f|^p \, d\mu = p \int_0^\infty \alpha^{p-1} \lambda_f(\alpha) \, d\alpha.$$

Proof. If there exists α such that $\lambda_f(\alpha) = \infty$, the the right hand side is infinite. By Chebyshev's inequality, so is the left hand side. So we may assume that $\lambda_f(\alpha) < \infty$ for all α . Then $\{f \neq 0\}$ is σ -finite. So we may assume μ is σ -finite.

Now consider $E = \{(x, y) \in X \times [0, \infty) : y < |f(x)|^p\}$. Now, by Tonelli's theorem,

$$\int_X |f|^p d\mu = \int_X \int_0^{|f(x)|^p} dy \, d\mu(x)$$

= $(\mu \otimes m)(E)$
= $\int_0^\infty \mu(\{|f|^p > y\}) = p \int \alpha^{p-1} \lambda_f(\alpha) \, d\alpha,$

where we have used the substitution $y = \alpha^p$.

1.3 Strong type and weak type

Definition 1.4. Let \mathcal{D} be some vector space of measurable \mathbb{C} -valued functions on (X, \mathcal{M}, μ) , and let $T : \mathcal{D} \to L^0(Y, \mathcal{N}, \nu)$ (the space of measurable functions. T is **sublinear** if

1.
$$c > 0 \implies |T(cf)| = c|Tf|$$
 for all $f \in \mathcal{D}$

2.
$$|T(f_1 + f_2)(x)| \le |Tf_1(x)| + |Tf_2(x)|.$$

Example 1.2. Let $\mathcal{D} = L^1_{loc}$. The Hardy-Littlewood maximal operator is

$$Hf(x) = \sup_{r>0} \frac{1}{m(B(x,r))} \int_{B(x,r)} |f(y)| \, dy.$$

Then $H(f_1 + f_2) \leq Hf_1 + Hf_2$, so H is sublinear.

Remark 1.3. Often, sublinear functions arise from taking the pointwise supremum of a collection of linear functions.

Definition 1.5. T is strong type (p,q) for $1 \le p,q \le \infty$ if

- 1. $L^p(\mu) \subseteq \mathcal{D}$
- 2. $T[L^p(\mu)] \subseteq L^q(\nu)$, and $||Tf||_q \leq C ||f||_p$ for some fixed C > 0.

Definition 1.6. T is weak type (p,q) for $1 \le p,q \le \infty$ if

- 1. $T[L^p(\mu)] \subseteq \operatorname{wk} L^q(\nu)$
- 2. $[Tf]_q \leq C[f]_p$ for some fixed C > 0.

Example 1.3. *H* is strong type $(, \infty, \infty)$. The Hardy-Littlewood maximal inequality says that *H* is weak type (1, 1).

Theorem 1.1 (special case of Marciukiewicz' theorem). Suppose T is sublinear on $\mathcal{D} = L^1(\mu) + L^{\infty}(\mu)$. Suppose T is weak type (1,1) and strong type (∞,∞) . Then T is strong type (p,p) for all $p \in (0,\infty]$.

Remark 1.4. $L^1(\mu) + L^{\infty}(\mu) \supseteq L^p(\mu)$ for all p.

Example 1.4. The Hardy-Littlewood maximal operator is strong type (p, p) for all $p \in [0, \infty]$. This is very difficult to prove by hand.

Proof. Pick a C such that $||Tf_{-\infty} \leq C||f_{\infty}$ and $[Tf]_1 \leq C||f||_1$ for all $f \in L^{\infty}$ or L^1 . Let $f \in L^p(\mu)$, and let A > 0. Write $f = f_1 + f_2$, where $f_1 = f \mathbb{1}_{\{|f| > A\}}$ and $f_2 = f \mathbb{1}_{\{|f| \leq A\}}$. We will optimize over the value of A. We have

$$||f_1|| = \int_{\{|f| > A\}} |f| \le \int_{\{|f| > A\}} \frac{|f|^p|}{A^{p-1}} = \frac{A^{p-1}}{\int_{\{|f| > A\}}} |f|^p < \infty.$$

By subliniearity,

$$|Tf(x)| \le |Tf_1(x)| + \underbrace{|Tf_2(x)|}_{\le CA}$$

 So

$$\mu(\{|Tf| > 2CA\}) \le \mu(\{|Tf_1 > CA\}) \le \frac{C||f_1||}{CA} = \frac{1}{A} \int_{\{|f| > A\}} |f|.$$

So we have improved the weak type (1,1) inequality to get

$$\lambda_{Tf}(2CA) \le \frac{1}{A} \int_{\{|f| > A\}} |f|.$$

Substitute this expression into the following:

$$||Tf||_{p}^{p} = p \int_{0}^{\infty} \alpha^{p-1} \lambda_{Tf}(\alpha) \, d\alpha \le (2C)^{p} \frac{p}{p-1} ||f||_{p}^{p}.$$